Processing math: 100%
Subalgebra 3A11E16
57 out of 119
Computations done by the calculator project.

Subalgebra type: 3A11 (click on type for detailed printout).
The subalgebra is regular (= the semisimple part of a root subalgebra).
Subalgebra is (parabolically) induced from 2A11 .
Centralizer: A11 + T2 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: A15
Basis of Cartan of centralizer: 3 vectors: (0, 0, 0, 1, 0, 0), (0, 0, 1, 0, -1, 0), (1, 0, 0, 0, 0, -1)
Contained up to conjugation as a direct summand of: 4A11 .

Elements Cartan subalgebra scaled to act by two by components: A11: (1, 2, 2, 3, 2, 1): 2, A11: (1, 0, 1, 1, 1, 1): 2, A11: (0, 0, 1, 1, 1, 0): 2
Dimension of subalgebra generated by predefined or computed generators: 9.
Negative simple generators: g36, g24, g15
Positive simple generators: g36, g24, g15
Cartan symmetric matrix: (200020002)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (200020002)
Decomposition of ambient Lie algebra: 2Vω1+ω2+ω3V2ω32Vω2+ω32Vω1+ω3V2ω22Vω1+ω2V2ω14Vω34Vω24Vω15V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). Vω2+2ψ1+2ψ2+2ψ3Vω1+ω3+2ψ2+2ψ3Vω1+2ψ12ψ2+4ψ3Vω1+ω2+ω3+2ψ1Vω3+2ψ1+4ψ22ψ3Vω2+ω32ψ2+4ψ3V4ψ1Vω1+ω2+4ψ22ψ3Vω22ψ1+2ψ2+2ψ3V2ω3V2ω2V2ω1Vω12ψ12ψ2+4ψ3Vω3+2ψ14ψ2+2ψ3Vω1+ω2+ω32ψ1Vω32ψ1+4ψ22ψ3Vω1+2ψ1+2ψ24ψ3Vω1+ω24ψ2+2ψ33V0Vω2+ω3+2ψ24ψ3Vω2+2ψ12ψ22ψ3Vω1+ω32ψ22ψ3Vω32ψ14ψ2+2ψ3Vω12ψ1+2ψ24ψ3V4ψ1Vω22ψ12ψ22ψ3
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 28) ; the vectors are over the primal subalgebra.g4h5+h3h6+h1h4g4g25g28g22g26g11g16g7g12g5g3g10g9g36g33g32g24g31g29g21g18g15g34g35
weight00000ω1ω1ω1ω1ω2ω2ω2ω2ω3ω3ω3ω32ω1ω1+ω2ω1+ω22ω2ω1+ω3ω1+ω3ω2+ω3ω2+ω32ω3ω1+ω2+ω3ω1+ω2+ω3
weights rel. to Cartan of (centralizer+semisimple s.a.). 4ψ10004ψ1ω12ψ1+2ψ24ψ3ω1+2ψ1+2ψ24ψ3ω12ψ12ψ2+4ψ3ω1+2ψ12ψ2+4ψ3ω22ψ12ψ22ψ3ω2+2ψ12ψ22ψ3ω22ψ1+2ψ2+2ψ3ω2+2ψ1+2ψ2+2ψ3ω32ψ14ψ2+2ψ3ω32ψ1+4ψ22ψ3ω3+2ψ14ψ2+2ψ3ω3+2ψ1+4ψ22ψ32ω1ω1+ω24ψ2+2ψ3ω1+ω2+4ψ22ψ32ω2ω1+ω32ψ22ψ3ω1+ω3+2ψ2+2ψ3ω2+ω3+2ψ24ψ3ω2+ω32ψ2+4ψ32ω3ω1+ω2+ω32ψ1ω1+ω2+ω3+2ψ1
Isotypic module decomposition over primal subalgebra (total 26 isotypic components).
Isotypical components + highest weightV4ψ1 → (0, 0, 0, -4, 0, 0)V0 → (0, 0, 0, 0, 0, 0)V4ψ1 → (0, 0, 0, 4, 0, 0)Vω12ψ1+2ψ24ψ3 → (1, 0, 0, -2, 2, -4)Vω1+2ψ1+2ψ24ψ3 → (1, 0, 0, 2, 2, -4)Vω12ψ12ψ2+4ψ3 → (1, 0, 0, -2, -2, 4)Vω1+2ψ12ψ2+4ψ3 → (1, 0, 0, 2, -2, 4)Vω22ψ12ψ22ψ3 → (0, 1, 0, -2, -2, -2)Vω2+2ψ12ψ22ψ3 → (0, 1, 0, 2, -2, -2)Vω22ψ1+2ψ2+2ψ3 → (0, 1, 0, -2, 2, 2)Vω2+2ψ1+2ψ2+2ψ3 → (0, 1, 0, 2, 2, 2)Vω32ψ14ψ2+2ψ3 → (0, 0, 1, -2, -4, 2)Vω32ψ1+4ψ22ψ3 → (0, 0, 1, -2, 4, -2)Vω3+2ψ14ψ2+2ψ3 → (0, 0, 1, 2, -4, 2)Vω3+2ψ1+4ψ22ψ3 → (0, 0, 1, 2, 4, -2)V2ω1 → (2, 0, 0, 0, 0, 0)Vω1+ω24ψ2+2ψ3 → (1, 1, 0, 0, -4, 2)Vω1+ω2+4ψ22ψ3 → (1, 1, 0, 0, 4, -2)V2ω2 → (0, 2, 0, 0, 0, 0)Vω1+ω32ψ22ψ3 → (1, 0, 1, 0, -2, -2)Vω1+ω3+2ψ2+2ψ3 → (1, 0, 1, 0, 2, 2)Vω2+ω3+2ψ24ψ3 → (0, 1, 1, 0, 2, -4)Vω2+ω32ψ2+4ψ3 → (0, 1, 1, 0, -2, 4)V2ω3 → (0, 0, 2, 0, 0, 0)Vω1+ω2+ω32ψ1 → (1, 1, 1, -2, 0, 0)Vω1+ω2+ω3+2ψ1 → (1, 1, 1, 2, 0, 0)
Module label W1W2W3W4W5W6W7W8W9W10W11W12W13W14W15W16W17W18W19W20W21W22W23W24W25W26
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element.
g4
Cartan of centralizer component.
h5+h3
h6+h1
h4
g4
g25
g26
g28
g22
g22
g28
g26
g25
g11
g12
g16
g7
g7
g16
g12
g11
g5
g9
g3
g10
g10
g3
g9
g5
Semisimple subalgebra component.
g36
h6+2h5+3h4+2h3+2h2+h1
2g36
g33
g13
g14
g32
g32
g14
g13
g33
Semisimple subalgebra component.
g24
h6+h5+h4+h3+h1
2g24
g31
g17
g20
g29
g29
g20
g17
g31
g21
g1
g6
g18
g18
g6
g1
g21
Semisimple subalgebra component.
g15
h5+h4+h3
2g15
g34
g8
g19
g27
g30
g23
g2
g35
g35
g2
g23
g30
g27
g19
g8
g34
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above000ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω1
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω2
ω3
ω3
ω3
ω3
ω3
ω3
ω3
ω3
2ω1
0
2ω1
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
ω1+ω2
ω1+ω2
ω1ω2
ω1ω2
2ω2
0
2ω2
ω1+ω3
ω1+ω3
ω1ω3
ω1ω3
ω1+ω3
ω1+ω3
ω1ω3
ω1ω3
ω2+ω3
ω2+ω3
ω2ω3
ω2ω3
ω2+ω3
ω2+ω3
ω2ω3
ω2ω3
2ω3
0
2ω3
ω1+ω2+ω3
ω1+ω2+ω3
ω1ω2+ω3
ω1+ω2ω3
ω1ω2+ω3
ω1+ω2ω3
ω1ω2ω3
ω1ω2ω3
ω1+ω2+ω3
ω1+ω2+ω3
ω1ω2+ω3
ω1+ω2ω3
ω1ω2+ω3
ω1+ω2ω3
ω1ω2ω3
ω1ω2ω3
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer4ψ104ψ1ω12ψ1+2ψ24ψ3
ω12ψ1+2ψ24ψ3
ω1+2ψ1+2ψ24ψ3
ω1+2ψ1+2ψ24ψ3
ω12ψ12ψ2+4ψ3
ω12ψ12ψ2+4ψ3
ω1+2ψ12ψ2+4ψ3
ω1+2ψ12ψ2+4ψ3
ω22ψ12ψ22ψ3
ω22ψ12ψ22ψ3
ω2+2ψ12ψ22ψ3
ω2+2ψ12ψ22ψ3
ω22ψ1+2ψ2+2ψ3
ω22ψ1+2ψ2+2ψ3
ω2+2ψ1+2ψ2+2ψ3
ω2+2ψ1+2ψ2+2ψ3
ω32ψ14ψ2+2ψ3
ω32ψ14ψ2+2ψ3
ω32ψ1+4ψ22ψ3
ω32ψ1+4ψ22ψ3
ω3+2ψ14ψ2+2ψ3
ω3+2ψ14ψ2+2ψ3
ω3+2ψ1+4ψ22ψ3
ω3+2ψ1+4ψ22ψ3
2ω1
0
2ω1
ω1+ω24ψ2+2ψ3
ω1+ω24ψ2+2ψ3
ω1ω24ψ2+2ψ3
ω1ω24ψ2+2ψ3
ω1+ω2+4ψ22ψ3
ω1+ω2+4ψ22ψ3
ω1ω2+4ψ22ψ3
ω1ω2+4ψ22ψ3
2ω2
0
2ω2
ω1+ω32ψ22ψ3
ω1+ω32ψ22ψ3
ω1ω32ψ22ψ3
ω1ω32ψ22ψ3
ω1+ω3+2ψ2+2ψ3
ω1+ω3+2ψ2+2ψ3
ω1ω3+2ψ2+2ψ3
ω1ω3+2ψ2+2ψ3
ω2+ω3+2ψ24ψ3
ω2+ω3+2ψ24ψ3
ω2ω3+2ψ24ψ3
ω2ω3+2ψ24ψ3
ω2+ω32ψ2+4ψ3
ω2+ω32ψ2+4ψ3
ω2ω32ψ2+4ψ3
ω2ω32ψ2+4ψ3
2ω3
0
2ω3
ω1+ω2+ω32ψ1
ω1+ω2+ω32ψ1
ω1ω2+ω32ψ1
ω1+ω2ω32ψ1
ω1ω2+ω32ψ1
ω1+ω2ω32ψ1
ω1ω2ω32ψ1
ω1ω2ω32ψ1
ω1+ω2+ω3+2ψ1
ω1+ω2+ω3+2ψ1
ω1ω2+ω3+2ψ1
ω1+ω2ω3+2ψ1
ω1ω2+ω3+2ψ1
ω1+ω2ω3+2ψ1
ω1ω2ω3+2ψ1
ω1ω2ω3+2ψ1
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M4ψ1M0M4ψ1Mω12ψ1+2ψ24ψ3Mω12ψ1+2ψ24ψ3Mω1+2ψ1+2ψ24ψ3Mω1+2ψ1+2ψ24ψ3Mω12ψ12ψ2+4ψ3Mω12ψ12ψ2+4ψ3Mω1+2ψ12ψ2+4ψ3Mω1+2ψ12ψ2+4ψ3Mω22ψ12ψ22ψ3Mω22ψ12ψ22ψ3Mω2+2ψ12ψ22ψ3Mω2+2ψ12ψ22ψ3Mω22ψ1+2ψ2+2ψ3Mω22ψ1+2ψ2+2ψ3Mω2+2ψ1+2ψ2+2ψ3Mω2+2ψ1+2ψ2+2ψ3Mω32ψ14ψ2+2ψ3Mω32ψ14ψ2+2ψ3Mω32ψ1+4ψ22ψ3Mω32ψ1+4ψ22ψ3Mω3+2ψ14ψ2+2ψ3Mω3+2ψ14ψ2+2ψ3Mω3+2ψ1+4ψ22ψ3Mω3+2ψ1+4ψ22ψ3M2ω1M0M2ω1Mω1+ω24ψ2+2ψ3Mω1+ω24ψ2+2ψ3Mω1ω24ψ2+2ψ3Mω1ω24ψ2+2ψ3Mω1+ω2+4ψ22ψ3Mω1+ω2+4ψ22ψ3Mω1ω2+4ψ22ψ3Mω1ω2+4ψ22ψ3M2ω2M0M2ω2Mω1+ω32ψ22ψ3Mω1+ω32ψ22ψ3Mω1ω32ψ22ψ3Mω1ω32ψ22ψ3Mω1+ω3+2ψ2+2ψ3Mω1+ω3+2ψ2+2ψ3Mω1ω3+2ψ2+2ψ3Mω1ω3+2ψ2+2ψ3Mω2+ω3+2ψ24ψ3Mω2+ω3+2ψ24ψ3Mω2ω3+2ψ24ψ3Mω2ω3+2ψ24ψ3Mω2+ω32ψ2+4ψ3Mω2+ω32ψ2+4ψ3Mω2ω32ψ2+4ψ3Mω2ω32ψ2+4ψ3M2ω3M0M2ω3Mω1+ω2+ω32ψ1Mω1+ω2+ω32ψ1Mω1ω2+ω32ψ1Mω1+ω2ω32ψ1Mω1ω2+ω32ψ1Mω1+ω2ω32ψ1Mω1ω2ω32ψ1Mω1ω2ω32ψ1Mω1+ω2+ω3+2ψ1Mω1+ω2+ω3+2ψ1Mω1ω2+ω3+2ψ1Mω1+ω2ω3+2ψ1Mω1ω2+ω3+2ψ1Mω1+ω2ω3+2ψ1Mω1ω2ω3+2ψ1Mω1ω2ω3+2ψ1
Isotypic characterM4ψ13M0M4ψ1Mω12ψ1+2ψ24ψ3Mω12ψ1+2ψ24ψ3Mω1+2ψ1+2ψ24ψ3Mω1+2ψ1+2ψ24ψ3Mω12ψ12ψ2+4ψ3Mω12ψ12ψ2+4ψ3Mω1+2ψ12ψ2+4ψ3Mω1+2ψ12ψ2+4ψ3Mω22ψ12ψ22ψ3Mω22ψ12ψ22ψ3Mω2+2ψ12ψ22ψ3Mω2+2ψ12ψ22ψ3Mω22ψ1+2ψ2+2ψ3Mω22ψ1+2ψ2+2ψ3Mω2+2ψ1+2ψ2+2ψ3Mω2+2ψ1+2ψ2+2ψ3Mω32ψ14ψ2+2ψ3Mω32ψ14ψ2+2ψ3Mω32ψ1+4ψ22ψ3Mω32ψ1+4ψ22ψ3Mω3+2ψ14ψ2+2ψ3Mω3+2ψ14ψ2+2ψ3Mω3+2ψ1+4ψ22ψ3Mω3+2ψ1+4ψ22ψ3M2ω1M0M2ω1Mω1+ω24ψ2+2ψ3Mω1+ω24ψ2+2ψ3Mω1ω24ψ2+2ψ3Mω1ω24ψ2+2ψ3Mω1+ω2+4ψ22ψ3Mω1+ω2+4ψ22ψ3Mω1ω2+4ψ22ψ3Mω1ω2+4ψ22ψ3M2ω2M0M2ω2Mω1+ω32ψ22ψ3Mω1+ω32ψ22ψ3Mω1ω32ψ22ψ3Mω1ω32ψ22ψ3Mω1+ω3+2ψ2+2ψ3Mω1+ω3+2ψ2+2ψ3Mω1ω3+2ψ2+2ψ3Mω1ω3+2ψ2+2ψ3Mω2+ω3+2ψ24ψ3Mω2+ω3+2ψ24ψ3Mω2ω3+2ψ24ψ3Mω2ω3+2ψ24ψ3Mω2+ω32ψ2+4ψ3Mω2+ω32ψ2+4ψ3Mω2ω32ψ2+4ψ3Mω2ω32ψ2+4ψ3M2ω3M0M2ω3Mω1+ω2+ω32ψ1Mω1+ω2+ω32ψ1Mω1ω2+ω32ψ1Mω1+ω2ω32ψ1Mω1ω2+ω32ψ1Mω1+ω2ω32ψ1Mω1ω2ω32ψ1Mω1ω2ω32ψ1Mω1+ω2+ω3+2ψ1Mω1+ω2+ω3+2ψ1Mω1ω2+ω3+2ψ1Mω1+ω2ω3+2ψ1Mω1ω2+ω3+2ψ1Mω1+ω2ω3+2ψ1Mω1ω2ω3+2ψ1Mω1ω2ω3+2ψ1

Semisimple subalgebra: W_{16}+W_{19}+W_{24}
Centralizer extension: W_{1}+W_{2}+W_{3}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 300.00)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00, 0.00, 0.00, 0.00)
(0.00, 1.00, 0.00, 0.00, 0.00, 0.00)
0: (1.00, 0.00, 0.00, 0.00, 0.00, 0.00): (250.00, 300.00)
1: (0.00, 1.00, 0.00, 0.00, 0.00, 0.00): (200.00, 350.00)
2: (0.00, 0.00, 1.00, 0.00, 0.00, 0.00): (200.00, 300.00)
3: (0.00, 0.00, 0.00, 1.00, 0.00, 0.00): (200.00, 300.00)
4: (0.00, 0.00, 0.00, 0.00, 1.00, 0.00): (200.00, 300.00)
5: (0.00, 0.00, 0.00, 0.00, 0.00, 1.00): (200.00, 300.00)



Made total 460 arithmetic operations while solving the Serre relations polynomial system.